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The phenomenon described below Is exhibited by polymer specimens, both amor- 
phous and crystalline structure, subjected to extension under prescribed 
conditions. When the experiment, as usual, is conducted at a steady rate of 
deformation (or 
the specimen In 
over the entire 
deformation (as 

‘G I 

more exactly, at constant velocity of the clamps se&ring 
the testing machine), then at first the extension Is uniform 
specimen and the stress Increases proportionally with the 
Indicated by the linear segment 1 in the diagram of Flg.1). 

At a certain instant the homogeneous extension 
is ‘suddenly Interrupted, the specimen exhibits 
a sharp narrowing, the so called necklng,whlch, 

/ 

however in contrast to the neck occurring In 
the tensile specimens made of common metals, 

3 does not continue to grow thinner and event- __ _.. . . _ . ually rupture, but navlng reacnea a certain 

Fig. 1 Fig. 2 

thickness propagates along the specimen until1 it covers the entire length 
of the specimen. The edges of the neck propagate along the specimen at a 
constant rate and exhibit the properties of a solid body in the sense that 
they preserve their shape (Fig.2 

t 
. hrlng the propagation of the neck the 

tensile stress remains constant segment 2 in Flg.1). After the neck has 
extended to cover the specimen completely; the deformation proceeds again 
for some time uniformly along the whole specimen and the tensile stress 
increases with the deformation approximately according to the linear law 
(segment 3 In Flg.1). Then at some point of the specimen a sharp narrowing 
occurs again, this Is a “neck of second order”; the phenomenon repeats 
Itself, Under favorable conditions development of necks of a few orders Is 
possible. Fig.3 shows photographs of consecutive extension states of a cap- 
rone (*) specimen tested at a temperature of 100°C. Shown from left to right 

“) The experiment was performed by V.I. Shobolova of the Mechanics Institute, 
Division of plasticity, Moscow State University. 
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are (a) the original specimen, (b) a specimen in which the neck of the first 
order extends over part of.its length, (c) a specimen in which the neck of 
the first order has covered the entire length and the neck of the second 
order can be seen at the top, (d) specimen completely covered by the neck. 
of the second crder. 

The phenomenon of the characteristic occurence and development of neck In 
polymer specimens in extension, which received the name of cold drawing was 
first discovered by Carothers and Hill [I]. They were followed by a number 
of investigators. Miklowitz [2 and 31, who performed experiments on nylon 
specimens should be particularly cited. The principal contributions to the 
Investigation of the phenomenon were introduced by Kargln and Sogolova [4 
and 51, who showed, precisely and In detail, the connection between formation 

and development of the neck, and 
changes In the macromolecular 

Fig.3 

structure of crystalline poly- 
mers (*). The experimental and 
the quailtatlve theoretical 
lnvestlgatlons of the formation 
and development of the neck in 
amorphous polymers were given In 
the works of 1u.S. Lasurkln (**). 
The wealth of experimental results 
and qualitative arguments Included 
in these works are used In the 
present paper which also Includes 
an attempt to construct a theory 
of the formation and development 
of the neck of polymers subjected 
to cold drawing. 

The theoretical consideration 
given below Is based on the state 
ment wldelv confirmed b-v ewerl- 
ments, that during the process, 
orientational deformations of the 
macromolecular structure elements 
of the material take place. It 
Is assumed that the speed of this 
process of orlentatlonal defor- 
mation depends strongly on the 
stresses acting at the given point 
in the material, so that the 
speed of the processlnthe wider 
region of the specimen is negll- 
glbly small compared with that 
In the transition region of the 
neck. This fact was conclu- 
sively demonstrated by the works 
of A.P. Aleksandrov (see dlsser- 
tatlon by 1u.S. Lasurkln cited 
above and also the naner [ 61). 
Finally, It is assumed that-f&- 
lowing the rapture of certain 
bonds between the macromolecular 
structural elements, brought 
about by the action of the applied 
stress, a corresponding mobility 
of the elements occurs, resulting 

*) Detailed statement of results relating to the change of macromolecular 
structure of polymers In the neck can be found in the dissertation by Sogo- 
lova “Investigation of large deformations of amorphous and crystalline poly- 
mers”, MOSCOW, 1363. 

**) Lazurkin, Iu.S., The mechanical properties of pOly?m?rS in vitreous state. 
Dissertation, M. Inst.flzproblem, Akad.Nauk SSSR, 1954. 



j.260 0.1. E.%renblrtt 

In a characteristic transfer of matter which takes place onlyl'under suffi- 
ciently large stresses. 

The proposed theory of the neck propagation appears to be similar In 
principle to the theory of propagation of the gene given In the paper of 
Kolmogorov, Petrovskii and Piskunov CT], and in particular to the theory of 
normal propa ation of flames developed in the papers of Zeldovich and Frank- 
Kamenetskli f 8 and 93. Apparently, this correspondence is not accidental 
and appears as a result of nontrivial analogy between the considered pheno- 
mena; 'in all cases uniform propagation depends on interaction of the pro- 
cesses of change and transfer of matter, 

1, We shall proceed from one-dimensional scheme of the process. The 

specimen Is considered as a rod with variable cross-section area. Dlstribii- 

tion of all quantlties over the cross-section is assumed uniform'(Flg. 4). 

The x-axis is chosen to coincide with the axis of the rod. The rod Is under 

tension in the axial direction due to the force p = uoSO , where S, Is the 

cross-section area of the rod at the instant when the uniform deformation 

ceases and preceding the formation of a neck. The process of development of 

the neck Is slow, it can be therefore considered as quasi-static and the 

following equation is valid 

aS=a&=P (1.1) 
P * jP 

// n * where Wr o = o(x,tf is the stress acting over a 

\u- - cross-section at x and at time t , and 

s(x,t) is the corresponding cross-section area, 

Fig. 4 With all differences of microscopic behavlor 

of the process for various polymers, the pro- 

cess always results In-transfer of macromolecular elements of the structure 

of the polymer (*) into a state characterized by higher degree of orlenta- 

'clan and corresponding hardening in the direction of draw&g. Due to the 

nonuniformity and known lack of order in the change in the m~crostru~t~e of 

the polymer, the process does not take place simultanously in all elements. 

Therefore, in spjte of the fact that the density and the chemical composition 

of the material may be the same in both states, one can consider the polymer 

as a blcomponent material consisting of small elements of the matter that 

has or has not undergone the change in the process of orientational defor- 

mation. 

We shall utilize a known concevt of division of the mM2x:z into chamed 
and unchanged particles. In fact; all elements undergo some kind or other 
of orientational deformation. Nevertheless, due to the nonhomogeneity of 
the field of microstresses the various elements undergo changes of widely 
differing degree. We can introduce some critical value of deformation, so 
that elements exceeding this value are considered as changed. 

The microphotograph (Flg.5) due to Sogolova shows a specimen of crystal- 

l.lne_polystyrene in the process of neck development. The direction of draw- 

*) That is a structure with a characteristic rate greatly exceeding that 
for molecular material. Such a structure results for crystalline as well 
as amorphous polymers (see [5, 6 and IO] and also the dissertation by T.I. 
Sogolova cited above ). 



lng is shown by the arrow. It can be seen that the material does.not deform 

uniformly; the figure shows the microvolumes of the matter 3.n.a state close 

to the original (darker region) neighboring with microvolumes of transformed 

matter (lighter regions) having clearly defined fibrous structure extending 
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in the direction of the applied force. 

Reasoning this way the material can be considered to consist of two com- 

ponents which we shall call the original and oriented components. The first 

component changes into the second under the action of the applied stress. 

It is natural to introduce a concentration factor n = n(w,t) defined as the 

ratio ofvolume of the oriented component contained.in some sufficiently small 

region of the total volume of this region, and evaluated at a specific point 

and time. In compliance with the generally accepted approach to the mechan- 

ics of continua this small region (in physical 

Fig. 5 

sense an lnflnitesslmalvolume) 

must contain sufficiently 

large number of the macro- 

molecular elements of the 

structure so that a meaning- 

ful average can be obtained. 

We shall note that the con- 

centration of the oriented 

matter n coincides with 

the supplementary character- 

istic parameter for solid 

bodies introduced by Sedov 

[ll] In his general investl- 

gatlon of models of continu- 

ous media. 

The cross-section area 

S(x,t) Is uniquely connected 

with the parameter n(x,t). 

If the progress Is such that 

as a result of complete 

change, the value of the con- 

centration parameter of the 

oriented matter reaches the value n, and the area of the cross-section 

changes a-times, then the change of the crea can be assumed to be propor- 

tional to the concentration of the oriented matter, so that 

s (x, t) 
SO 

=~-(1-_)~ (I.3 

Here SO is the area of the cross-section measured at the Instant the homo- 

geneous deformation ceases and before the appearance and development of the 

neck process. 

We shall note here that, in general, the material can exhibit a number of 
definite changes charecterlzed by specific degrees of orientation, hardening 
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of the changed material and the specific degree of change. The quantity c 
determines the change taking place and, In general, Is different for differ- 

ent changes. 

2, Two quations (1.1) and (1.2) correlate three parameters S, c and n. 

In order to obtain a complete system of equations it is necessary to take 

into consideration the kinetics of the change of the matter during the pro- 

cess of development of the orientational deformation. 

Let us consider a volume of the material under the conditions of homoge- 

neous tension and deformation. It Is natural to define 4 , the velocity 

with which the process of change from the original into oriented matter takes 

place, as a volumet-ic rate of change per unit volume and unit time. It is 
evident that the quantity g depends on the degree of the development of 

the orientational deformation, that is on the concentration of the oriented 

matter r, , as well as on the stress o 

4 = Q h 4 (2.1) 
The results obtained by Aleksandrov’s collaborators (for detailed bibllo- 

graphy see [63), indicate that the function g(n,n) Is very strongly depend- 

ent on the stress a . On the basis of these results it can be assumed that 

the expression for g has a form of the Arrhenius dependency 

q = A (1 -;)%?xp [-!q$q (2.2) 

where U Is the energy of activation which according to known approximation 

can be assumed constant, k is the Boltzmann constant, 7’ is the absolute 

temperature, P and Y are some constants of the material ant the coeffi- 

cient A can ‘be a weak function of c . 

The exact form of the function p(n,c) Is not required for the following 

general investigations. It Is sufficient to stipulate that the magnitude 

of the velocity a(n,c) increases rapidly with the stress c , that is that 

in the process of cold drawing the velocity of transportation of the matter 

in the wide part of the specimen is infinitly small compared to the velocity 

In the region of the neck. 

We shall note that the hypothesis of the strong dependence of the velocity 
of development of orientational deformation and structural transformation on 
the stress was one of the two main assumptions forming the basis of the uali- 
tative description of the neck propagation process proposed by Lazurkin ?*). 
It Is not intended $0 discuss here this process as a whole. We shall note 
only that the second hypothesis of Lazurkin and its further development 
basically differ from that given below. Some necessary definition of this 
hypothesis in a more precise form shall be introduced in what follows. 

We shall consider now the formulation of the second hypothesis. In the 

process of the development of orientational deformation in any polymer, 

*I See footnote on p.1265. 
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crystalline or amorphous, at any rate, rapture of bonds between elements 

Constituting the macromolecular structure of the polymer takes place. 

The fact that bonds. are ruptured Is born out by experimental evidence 
where appearance of numerous-microscopic cracks and dlscontlnultles .are 
observed. This was definitely proved by Lazurkln (*), who performed a series 
of experiments on cold drawing of amorphous polymers In media of various 
compositions and discovered a significant Influence of the composition of 
the medium on the development of the neck. (The composition of the medium 
was such that It could Influence the development of the neck only by cohe- 
sive forces acting on the surfaces on the microscopic cracks and dlscontinu- 
ities, I.e. by changing the aenslty of the surface energy). 

The relative displacement of the elements of the macromolecular structure 

Is Increased by the rapture of bonds. The nonuniformity of the imposed 

stress field, on the microscopic scale, gives rise to the relative dlspla- 

cements of the elements of the mlcromolecular structure. By this token, 

particles in a given section do not move as a unit together with the plane 

of the sectlcn which moves at a mean volumetric velocity, Instead, a certain 

transfer of matter through the plane takes place. Two transfer processes 

which account for the flow of the oriented matter through the plane of the 

section can be visualized. Firstly, the transfer of the oriented matter 

takes place in the direction opposite to the gradient of the stress. It IS 

natural to call this process "strain-diffusion". Secondly, the transfer of 

the oriented matter takes place in direction opposite to the gradient Of its 

concentration. It should be pointed out that although the process Is for- 

mally similar to diffusion of oriented matter It is not caused by thermal 

effects whose contribution Is negligibly small, but by microstresses. Thus, 

the thermodinamlc forces controlling the transfer of oriented matter are the 

gradients of stress and of concentration (**). 

The respective flow of the oriented matter Q1 and Q2 are given by the 

following 
Q1=-Bg, Qy-D$ (2.3' 

it Is understood that the coefficients B and D , In general, strongly 
depend on the stress. At present, the information pertaining to the dlffu- 

sion and strain-diffusion flows Is Insufficient to determine their relative 

magnitudes and therefore in the following both flows will be considered. 

The second hypothesis can be restated as follows: under the action of 

the applied stress field a strain-diffusion and diffusive transfer of Oriented 

matter takes place. The total flow of the oriented matter Q per unit time 

and unit area of the cross-sectlon is given by 

Q= - B (0) g-D (0) g (2.4) 

*I See footnote on p. 1265. 

**) In this work only one-dimensional model Is considered. In the multl- 
dimensional case, of course, the maximum tangential stress enters all the 
relationships. 
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The above descriptions of the appearance of mobility of the elements of 

oriented matter and their transfer are quaIltatlveLy supported by recent 

experimental lnveatlgatlona of Kargln. Preliminary estimates of the magnl- 

tudes of the diffusion and strain-diffusion coefficients indicate that they 

are small. Nevertheless, the combined effect of these small quantities Is 

sufficient to account for the'observed effect, 

Composing ln the usual msnner the equation of continuity for the oriented 

matter, we obtain 

where u(x,t) Is the velocity of the section x at the Instant t , The 

overall equation of continuity based on the assumption that the density 

remains constant has the form 

Combining Equations (2.5) and (2.6), we obtain 

In this manner the process of orlentatlonal deformation of a specimen 

subjected to cold drawing Is described by the system of two differential 

equations (2.6) and (2.7) and two end conditions (1.1) and (1.2). Together. 

with the corresponding lnltlal.and boundary conditions the system completely 

determines the process. 

3. We shall now consider a uniform propagation of the neck. Once more, 

we note, that there exists a deep analogy between this process and the pro- 

pagation of the gene [ 73 and the normal propagation of flames C8 and 91 due 
to the generality characterizing the approach to these problems. The uniform 

propagation of the neck 1s described by the solution of the system of equa- 

tlons obtained above. This solution Is Invariant under the transformation 

of time and space coordinates. In order to solve the system we shall con- 

sider the specimen to be Infinitely long, so that the clamps are positioned 

at x-f=. We shall assume that the edge of the neck propagates from 

right to the left so that the material near the right clamp (X - + .=) Is 

completely deformed, and on the other side (x 4 - =) the orlentatlonaI 

deformation has not started. In this way, no change takes place ln the 

vicinity of the clamps and there the flow of oriented matter Is absent. The 

clamps are moving apart at a constant rate which causes the edge of the neck 

to move at a steady velocity V . We shall assume also that ln the absolute 

reference frame the left clamp Is fixed and the right moves. We shall use 

the coordinate 5 = x + Vt , moving with the edge of the neck, so that the 
process Is steady. Equations (2.6) and (2.7) become then ordinary dlffer- 

entlal equations and assume the form 

dSu 
z- - 0, su = const (3-l) 
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SU+- Q h 4 s + +S[B(u)~-I-D(u)~] (3.2) 

(The quantity u here and In the following development Is preserved for 

the velocity in the moving coordinate system). 

The value of the constant In (3.1) Is determined from the conditions at 

the left clamp 
s = s,, U=V at fh--oo 

so that (3.1) assumes the form 
Su = scv (3.3) 

The velocity u , at which the clamps part, is determined as follows 

v = u (00, t) - u (- 00, t) = 1 
S(=%t) &I/ - v = pv (3.4) 

Eliminating n, S and u from Equation (3.2) with the help of Equations 

(l.l), (1.2) and (3.3) we obtain the equation for the distribution of stress 

u(5) nv*-q(n a)a(l-a)+oz(G-a) d 
‘dF-- ’ (3.5) 

where 

P (a, 00) = $ [B (4 + D (4 oa ;r: a) ] (3.6) 

At the left clamp the orientational deformation has not started yet, at 

the right clamp.it has reached completion, therefore at both clamps the flow 

of orlented matter Is equal to zero, and the distribution of stresses o(s) 

must satisfy two boundary conditions 

da 0 u=uo, -= 
de 

at C-+-W 

da o=Q”, -50 at t-+w 
a dE 

(3.7) 

The independent variable < can be eliminated from Equation (3.5) by 

taking I = P(u, u,)du/dS and considering u to be the Independent variable. 

Equation (3.5) is then reduced to the first order equation 

dz n0V 9p 
x = @(l-a) 

-- 
bz 

(3.8) 

conditions (3.7) assume the form 

Z= 0 at_d=60, z=O at b= 00/a 

It is convenltnt to change to the following variables 

(a -co) z=-------, 
58 

u = =gz 
P ( 

p2$) 

Then Equation (3.8) and the end condition (3.9) take the form 

(3.9) 

(3..10) 

du nov 0 (r, ao) 9 P602 

dz= (1 - a) ( 1 + ,!3Qa _ U ’ 
8 = 

P u+Lw 
(3.11) 

u=o at z=O, u=o at Z=1 (3.12) 

It Is easy to see that a necessary condition for existence of solutions 

of the boundary value problem (3.11), (3.12) Is 
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0 (0, %) = 0, 8 (l,a,) =.o (3.13) 

The physical meaning of these conditions is clearly the absence of change 

at infinity. Indeed, If for instance the velocity of change was finite at 

Infinity to the left (the wider part of the specimen) then in the short time 

the process could not longer exist as the neck would have reached the left 

clamp and all the matter would have been converted Into the oriented state. 

One would think that the first condition of (3.13) contradicts the expo- 
nentlal relationship pf Equation (2.2), I.e. if this relationship is assumed, 
the first condition of (3.13) will not be satisfied. However It& the expo- 
nential dependence of the velocity of transfer that makes it negligibly small 
In the wide region of the rod compared t6 that in the region where propaga- 
tion takes place. Therefore the change of whatever small but finite quantity 
of matter In the wide region of the rod would necessarily take a very long 
time, during which the neck propagates over large distances. For specimens 
of realistic dimensions the preliminary orientational deformation In the 
wdder part of the specimen Is Infinitely small and conditions (3.13) can 
always be considered satisfied. (As Is well known, a similar situation 
arises In the theory of combustion [9] ) . 

We shall note now that it is not possible to solve the first order equa- 

tion (3.11) for an arbitrary set of values of parameters v and o0 and 

satisfy the two end conditions (3.12) at the same time. As Is usually the 

case, the velocity of the separation of clamps v , or for that matter, the 

neck propagation velocity v = (l/B)V is arbitrary. However the value of 

the parameter o,= uO* , the “critical stress” (*), has a specific slgnifl- 

cance and has to be.chosen so that the sought solution satisfies both end 

conditions (3.12). The p$yslcal meaning of the parameter u0 derives from 

the fact that for a given velocity of clamps the neck forms only when the 

stress reaches a well defined value. It Is evident that for some values of 

the velocity of drawing there existsno values of u,= uo* which Will give 

solutions satisfying both end conditions. This means that at such velocities 

of drawing rupture will occur with no cold drawing taking’ Place. 

4, We shall now derive certain conditions under which the critical stress 

00* exists and Is unique. We assume that ~(T,Q,) = 0 not only at 7 = 0 

but also on the interval 0 < z < Q < 1, tid for Z, < r < 1, the function 

!j(~,~).ls a continuously differentiable function of both arguments and mono- 

tonously increasing with 0,. The first assumption, as In the theory of com- 

bustion [g andPI, assures In a certain sense the stability of the process. 

Under these assumptions the critical stress u,* exists and is unique for 

all values of V . Accoedlng to Equation (3.11) for 0, = 0 \ue have 

(j (z, IJ,) z O,, then the solution of Equation (3.11) satisfying the first of 

condltlons (3.12) has the form 

Uo 6) = (1 
noVf 

-4 (1 + ST) 
(4-l) 

*) “Recrystallization stress ” according to accepted terminology [4 and 53 . 
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so that 

The family of solutions of Equation (3.11) satisfying the first of the 

conditions (3.12) for Us> 0, Is shown In ~ig.6. All curves of the family 

fall below the curve corresponding to u = u. (7) 

u 

k!!!z% 

and form two classes. The curves of the first 

“o(r) class Intersect the ordinate 7 = 1 at points 

corresponding to positive values of u and the 

curves of the second class Intersect the abscissa 

I 
at points T< 1 not reaching the ordinate T =l. 

2 
The solution curve dividing the two classes passes 

~=l andlsthe 
0 To I -r 

through the saddle point u = 0, 

unique sought solution. The corresponding value 
Fig. 6 of the parameter go== tyO* Is the critical stress. 

We shall show the individual steps of the proof of existence and uniqueness 

of the sought solution of the boundary value problem and the stress a,” . 

In order to prove the existence we shall note that if oe” > oq’ and 
~(7, o,“) > 0, ~(7, u0 ‘) > 0 then 

u (% 00’) > u (% o,“) for $<Z<l (4.2\ 

Differentiating Equation (3.11) with respect to u0 gives 

i a0 au 
2);= - ao, (4.3) 

Considering this as a linear equation In v and using the condition 
~(7~) = 0 , we obtain 

v (z) = - exp (i F)isxp(-~~)+$zr<O (4.4) 
70 50 +Ll 

From this results the proposed Inequality (4.2), since we have 
4” 

u (z, no”) - u (Z, (TO’) = 
s 

vda,<O 

4’ 
As direct consequence of the inequality (4.2) and Equation (3.11) inte- 

grated between the limits zero and 7 , for u>O we get 

+ 

u (G a,) = uo (4 - (4.5) 

+o 70 

so that for any Included in the interval 7 < T+< 1 the solution 
of Equation (3.11; k?satisfying the first of condl?ions (3.12) satisfies 
also the inequality 71 

u (G, 00) < uo (G) - 
s 

0 (t, a,,) dt 
uo (t) 

(4.6) 
5” 

From this inequality and the fact that U,(T) is bounded, whereas e(‘r,o,) 
increases without bounds with u, , It follows that for some, u,,= aol the 
solution u(~,u_) vanishes at the point 7 = T+. 

We shall now consider u,(T,u,,), the solutions of Equation (3.11) satis- 
fying the second of the conditions (3.12). The point u - 0, 7 = 1 1s a 
singular point of the system,a saddle point. Through this point pass two 
solution curves (separatrices). ‘The slope of these curves at the point 7’1 



satisfies the characteristic equation 

(4.7) 

.11ty of u(7,u0**), 
the existence of a value 
I du CT, ao**) / d-c I< I du k 

In the Interval 70< 7 < 1 , such that 
q$jk 

8’ 
However, this condition Is Impossible 

luch as 'u(~,uc )- satisfies 

(t,,, oil**) < u (z**, 009. 

quatlon (3.11) and 8 (Z,*, a,,**) > C (Z**,oc*), 
The resulting contradiction 'proves uniqueness. 

lnasm 
or u 

In 

value 

(3.11 

the general case, for an arbitrary form of 

a,* can be found since the Cauchy problem 

) can always be solved for one or the other 

the function tJ(~,u,), the 

associated with Equation 

of the Initial values 

Since 0,' (IV%) <,%,one curve has a positive slope, the other negative. 
For obvious reasons we choose the curve with the negative slope. 

Owing to the continuity of the solution field a curve U(T,U ) for suffl- 
clently small uc approaches the curve u 
ts<t<l. From the continuity of the so utlons P 

(7) over the whole Interval 

that for a 
u,(~,oc) It also follows 

;d;i$?eT uA ~~,u,,) > 0 . However, for u,= u 1 the difference Is o&iously t* 
chosen sufficiently close to 7 = 1 and for small u 

ga n from the continuity of,the dltference It follows that there 
exists cc= cc* 
meter 0, has 

for which u,(~,,u,*) = u(~+,u,,* ) . This value of the para- 
to be determined. 

The uniqueness of the solution and of the critical stress can be proved 
from the very same considerations. Let us assume that two solutions of the 

u=o at %=I 

for different values of u0 . Therefore c,* can be foXId to any required 

degree of accuracy by trial and error. 

For the practically Interesting case when 7c has a value close to 1, some 

simple conditions determining cc * can be obtained from the corresponding 

deveiopment In the theory of combustion [8 and 91. It Is easy to show that 

u (q,) < (2 \ 8 (T, a,) dr)“*= F (a,) (4.8) 
To 

where F(Q) Is a monotonous, Increasing function of u, . In this way we 

find 
F ho;, = novto 

(1 - a) (1 + Pro) (4.9) 

where ccl* Is an estlmate.from below of uO* . 

Substituting Into the right-hand side of Equation (3.11) the estimate from 

above of u(7) , from (4.8) we obtain 

(4.10) 

from which It follows that o,d, an estimate from above of cc* satisfies 

Eauatlon 
p(aoz*)_ ~(l---o)noV novzo 

(1 - a) (I + ~To) = (1 - a) (1 + pro) 
(4.11) 
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For T,,+ 1 both estimates coincide resulting 

mining the critical stress cc* 

From (3.11) we have 
F (a,*) = ls 

under tensu., 1275 

in the final relation deter- 

(4.12) 

For ~c approaching unity the above equation assumes the form 

(4.14) 

as only g(~,uc) varies rapidly in the vicinity of 71. 

If, in particular, Expression (2.2) Is assumed for p(n,c), then (con- 

sidering (1 - a) yo, IakT > 1 in order for q (z, (TJ to be a rapidly 
varying function in the vicinity of z = 1) we obtain the following expres- 

sions: 
4 ==: Au* exp 

1 

s 
' qdz z AaQ+l (1 - a)“-’ exp u - We/a 

I( ) 
g P-H r (p + 1) 

(4.15) 
_ 

kT T_ Go 
Corres"pondingly, the expression determining a,* becomes 

V26 = [aa? ($) + D (Z) gJ ($)p+lexp (I$) (r,.lfj; 

where & is given by 
g=noV --c~)~exp( U/kT) 

2‘4cP+lr (p + 1) 
(4.17) 

Finally we shall note that apart from the problem of uniformly propagating 
neck as discussed in the above development, there is another significant for- 
mulation of the problem of the orientational deformation. Specifically, we 
shall consider the case In which the specimen Is not of constant cross- 
section but whose cross-section narrows down In some specified manner. Obvi- 
ously, under loading, the orientational deformation will start in the narrow 
region. Two possibllitles arise. First, if the process of transfer of ori- 
ented matter assumes sufficiently high Intensity, the narrowing will quickly 
propagate in both directions and the ensuing process asymptotlcally approaches 
the character of neck propagation developed above. The second possibility 
Is that the transfer process will not reach sufficient intensity and the neck 
will grow thinner until fracture occurs. For a given set of values of the 
parameters it Is the shape of the narrowing or the function describing the 
variation of the cross-section over the length of the sample that determines 
which of these two posslbllltles will take place. In this way a new problem 
arises, namely to determine what forms of the narrowing will result In unl- 
form propagation and what forms will result In rupture. We shall note that 
this problem Is conceptually similar to the problem of development of cheml- 
cal reactions studied by Zel'dovich and Gel'fand [12]. Solution of this prob- 
lem allows to derive the conditions under which the process switches from 
cold drawing to rupture. 

The usefulness of the solution of the problems of uniform propagablon of 
the neck and the development of the orientational deformation Is twofold. 
First, it allows to determine the critical stress and other characteristic 
parameters of the process. Secondly It provldes the foundation for the study 
of the agreement between the theory of the kinetics of the orientational 
deformation and the measurements of the critical stress for different velo- 
cities of drawing and under different temperatures. 
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