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The phenomenon described below is exhlbited by polymer specimens, both amor-
phous and crystalline structure, subjJected to extension under prescribed
conditions. When the experiment, as usual, 1s conducted at a steady rate of
deformation (or more exactly, at constant velocity of the clamps securing
the specimen in the testing machine), then at first the extension is uniform
over the entire specimen and the stress increases proportionally with the
deformation (as indicated by the linear segment 1 in the diagram of Fig.l).
At a certain instant the homogeneous extension
1s 'suddenly interrupted, the specimen exhibits
a sharp narrowing, the sd called necking,which,
however in contrast to the neck occurring in
the tensile specimens made of common metals,
does not contlnue to grow thinner and event-
ually rupture, but having reached a certain
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Fig. 1 Fig. 2

thickness propagates along the specimen untill it covers the entire length
of the specimen. The edges of the neck propagate along the specimen at a
constant rate and exhibit the propertles of a solid body in the sense that
they preserve thelr shape (Fig.2z. During the propagation of the neck the
tensile stress remains constant (segment 2 in Fig.l). After the neck has
extended to cover the specimen completely; the deformation proceeds again
for some time uniformly along the whole specimen and the tensile stress
increases with the deformation approximately according to the linear law
(segment 3 in Fig.l). Then at some point of the specimen a sharp narrowing
oceurs again, this 1s a "neck of second order”; the phenomenon repeats
itself, Under favorable conditions development of necks of a few orders 1s
possible., Fig.3 shows photographs of consecutlve extenslon states of a cap-
rone (*) specimen tested at a temperature of 100°C. Shown from left to right

*) The experiment was performed by V.I. Shobolova of the Mechanics Institute,
Division of plasticity, Moscow State University.
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Extension of the neck of polymer specimens under tension 1265

are {(a) the original specimen, (b) a specimen in which the neck of the first
order extends over part of lts length, (¢c) a specimen in which the neck of
the first order has covered the entire length and the neck of the second
order can be seen at the top, (d) specimen completely covered by the neck
of the second crder.

The phenomenon of the characteristic occurence and development of neck in
polymer specimens 1n extension, which received the name of cold drawlpg was
first discovered by Carothers and Hill [1]. They were fqQllowed by a number
of investigators. Miklowitz [2 and 3], who performed experiments on nylon
specimens should be particularly cited. The principal contributions to the
investigation of the phenomenon were lntroduced by Kargiln and Sogolova [4
and 5], who showed, precisely and in detail, the connection between formation
and development of the neck, and
changes in the macromolecular
structure of crystalline poly-
mers (*). The experimental and
the qualitative theoretical
investigations of the formation
and development of the neck in
amorphous polymers were given in
the works of Iu.S. Lazurkin (**).
The wealth of experimental results
and qualitative arguments included
in these works are used 1n the
present paper which also includes
an attempt to construct a theory
of the formation and development
of the neck of polymers subjected
to cold drawing.

The theoretical conslderation
given below 1s based on the state-
ment widely confirmed by experi-
ments, that during the process,
orlentational deformations of the
macromolecular structure elements
of the material take place. It
1s assumed that the speed of this
process of orlentational defor-
matlon depends strongly on the
stresses acting at the glven point
in the material, so that the
speed of the process in the wider
reglon of the specimen is negli-
glbly small compared wlth that
in the transition region of the
neck, This fact was conclu-
slvely demonstrated by the works
of A.P. Aleksandrov (see disser-
tation by Iu.S. Lazurkin cited
above and also the paper [6]).
Finally, 1t 1is assumed that fol-
lowing the rapture of certain
bonds between the macromolecular
structural elements, brought
about by the action of the applled
Fig.3 stress, a corresponding mobility

g. of the elements occurs, resulting

*) Detalled statement of results relating to the change of macromolecular
structure of polymers in the neck can be found in the dissertation by Sogo-
lova "Investigation of large deformations of amorphous and crystalline poly-
mers", Moscow, 1963,

##) Lazurkin, Iu.S., The mechanical properties of polymers in vitreous state,
Dissertation, M, Inst.fizproblem, Akad.Nauk SSSR, 1954.
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in a characteristic transfer of matter which takes place only'under suffi-
¢lently large stresses,

The proposed theory of the neck propagation appears to be similar in
principle to the theory of propagation of the gene glven in the paper of

Kol 2 Pet
Kolmogorov, Petrovskll and Piskunov gg;, and in par ticular to the \aut‘.'UL.Y of

normal propagation of flames developed in the papers of Zeldovich and Frank-
Kamenetskii {8 and 9]. Apparently, this correspondence is not accidental
and appears as a result of nontrivial analogy between the considered pheno-
mepa; -“in all cases uniform propagatlion derends on interaction of the pro-
cesses of change and transfer of matter,

1. We shall proceed from one-dimensional scheme of the process. The
apecimen 1s considered as a rod with variable cross-section area., Distribu~
tion of all quantities over the cross-section is assumed uniform (Fig. 4).
The x-axis is chosen to coincide with the axis of the rod. The rod is under
tension 1in the axlal direction due to the force p = g,5, , where §, is the
cross-section area of the rod at the instant when the uniform deformation
ceases and preceding the formatlon of a neck. The process of dev€lopment of
the neck 1s slow, 1t can be therefore considered as quasi-static and the

following eaquation 1s valid
08 = .Sy = P (1.1)
where @ = o{x,#) 1s the stress aeting over a

cross~section at x and at time ¢ , and
5{x,¢) is the corresponding cross-section area.

Fig. &4 With all differences of microscoplc behavior
of the process for various polymers, the pro-

cess always results in transfer of macromolecular elements of the structure
of the polymer (*) into a state characterized by higher degree of orienta~-
tion and corresponding hardening in the direction of drawing, Due to the
nonuniformity and known lack of order in the change in the microstructure of
the polymer, the process does not take place simultanously in all elements,
Therefore, in spite of the fact that the density and the chemical composition
of the material may be the same 1n both states, one can consider the polymer
as a blcomponent material consisting of small elements of the matter that
has or has not undergone the change 1n the process of orlentational defor-
mation.

We shall utilize a known concept of dlvision of the matte. into changed
and unchanged particles. In fact, all elements undergo some kind or other
of orientational deformation. Nevertheless, due to the nonhomogeneity of
the field of microstresses the various elements undergo changes of widely
differing degree. We can introduce some critical value of deformation, so
that elements exceeding this value are considered as changed.

The microphotograph (Fig.5) due to Sogolova shows a specimen of crystal-
line polystyrene in the process of neck development. The direction of draw~

*)} That is a structure with & characteristic rate greatly exceedlng that
for molecular materlial. Such a structure results for crystalline as well
as amorphous polymers (see [5, 6 and 10] and also the dissertation by T.I.
Sogolove cited above
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ing is shown by the arrow. It can be seen that the material does .not deform
uniformly; the figure shows the microvolumes of the matter in a state close
to the original (darker region) neighboring with microvolumes of transformed
matter {lighter regions) having clearly defined fibrous structure extending

in the dlrection of the applied force.

Reasoning this way the material can be considered to consist of two ¢om-
ponents which we shall call the orlginal and oriented components. The first
component changes into the second under the action of the applied stress.

It is natural to introduce a concentration factor n = n(x,t) defined as the
ratlo of volume of the oriented component contalined in some sufficlently small
reglon of the total volume of this reglon, and evaluated at a specific point
and time. In compliance with the generally accepted approach to the mechan-
ics of continua this small region (in physical sense an infinitessimal volume)
must contain sufficiently
large numbér of the macro-
molecular elements of the
structure so that a meaning-
ful average can be obtailned.
We shall note that the con-
centration of the oriented
matter n coincides with
the supplementary character-
istic parameter for solld
bodies introduced by Sedov
[11] in his general investi-
gation of models of continu~
ous media.

The cross-section area
S{x,t) 1s uniquely connected
with the parameter n(x,¢).
If the progress 1s such that
as a result of complete
change, the value of the con-

Fig. 5 centration parameter of the
oriented matter reaches the value n, and the area of the cross-section
changes gq-times, then the change of the area can be assumed to be propor-
tional to the concentration of the orlented matter, so that

S (=, , 1
_%:ﬂ=1_(1—a)l%—l (1.2)

Here S, is the area of the cross-section measured at the instant the homo-
geneous deformation ceases and before the appearance and development of the
neck process,

We shall note here that, in general, the material can exhibit a number of
definite changes charecterized by specific degrees of orlentation, hardening
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of the changed materlial and the specific degree of change. The quantity g
determines the change taking place and, 1ln general, 1s different for differ-
ent changes.

2. Two quations (1.1) and (1.2) correlate three parameters §, ¢ and n.
In order to obtain a complete system of equations 1t 1s necessary to take
into consideration the kinetics of the change of the matter during the pro-
cess of development of the orlentational deformation,

Let us consider a volume of the material under the conditions of homoge-
neous tension and deformation. It is natural to define g4 , the velocity
with which the process of change from the original into oriented matter takes
place, as a volumet—ic rate of change per unit volume and unit time. It 1is
evldent that the quantity 4 depends on the degree of the development of
the orientational deformation, that is on the concentration of the oriented
matter n , as well as on the stress ¢

q=q(n, o) (2.1)

The results obtained by Aleksandrov's collaborators (for detailled biblio-

graphy see [6]), indicate that the function g¢(n,0) is very strongly depend-

ent on the stress ¢ . On the basils of these results it can be assumed that
the expression for ¢ has a form of the Arrhenius dependency

g =4t — =) exp[— 2] (2.2)

where [ 1s the energy of activation which according to known approximation
can be assumed constant, % 1s the Boltzmann constant, 7T 1s the absolute
temperature, p and y are some consbtants of the material and the coeffi-
clent 4 can be a weak function of ¢ .

The exact form of the function g(n,¢) i1s not required for the following
general investigations. It is sufficlent to stipulate that the magnitude
of the veloclty g¢(n,s) increases rapidly with the stress ¢ , that 1is that
in the process of cold drawing the veloclty of transportation of the matter
in the wilde part of the specimen 1ls infinitly small compared to the velocity
in the region of the neck.

We shall note that the hypothesis of the strong dependence of the veloclty
of development of orientational deformation and structural transformation on
the stress was one of the two main assumptions forming the basis of the ?uali—
tative description of the neck propagation process proposed by Lazurkin *),
It is not intended to discuss here thils process as a whole. We shall note
only that the second hypothesls of Lazurkin and its further development
baslcally differ from that given below. Some necessary definition of this
hypothesis in a more precise form shall be introduced in what follows.

We shall consider now the formulation of the second hypothesis. In the

process of the development of orlentational deformation in any polymer,

#) See footnote on p.1265,
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crystalllne or amorphous, at any rate, rapture of bonds between elements
constituting the macromolecular structure of the polymer takes place.

The fact that bonds are ruptured 1s born out by experimental evidence
where appearance of numerous-microscopic cracks and discontinultles are
observed. This was definitely proved by Lazurkin (*), who performed a series
of experiments on cold drawing of amorphous polymers 1in medla of various
compositions and discovered a significant influence of the composition of
the medium on the development of the neck. (The composition of the medium
was such that it could influence the development of the neck only by cohe-
sive forces acting on the surfaces on the microscopic cracks and discontinu-
itles, 1l.e. by changing the aensity of the surface energy).

The relative displacement of the elements of the macromolecular structure
is increased by the rapture of bonds. The nonuniformity of the imposed
stress field, on the microscoplc scale, gives rise to the relative displa-
cements of the elements of the micromolecular structure. By this token,
particles 1n a glven section do not move as a unit together wilth the plane
of the secticn which moves at a mean volumetric velocity, instead, a certain
transfer of matter through the plane takes place. Two transfer processes
which account for the flow of the oriented matter through the plane of the
section can be visualized. Firstly, the transfer of the orlented matter
takes place in the direction opposite to the gradlent of the stress. It 1s
natural to call this process "strain-diffusion”. Secondly, the transfer of
the orlented matter takes place in direction opposite to the gradlent of 1ts
concentration. It should be pointed out that although the process 1s for-
mally similar to diffusion of oriented matter 1t 1is not caused by thermal
effects whose contribution 1s negligibly small, but by microstresses. Thus,
the thermodinamlc forces controlling the transfer of orlented matter are the
gradients of stress and of concentration (**).

The respective flow of the oriented matter ¢, and ¢, are given by the

followilng s an .
QIZ_BF;, Qo_—-‘—‘Da‘ (2.3\:

i1t 1s understood that the coefficients & and p , in general, strongly
depend on the stress. At present, the information pertaining to the diffu-
sion and strain-diffusion flows is 1nsuffilclent to determine their relative
magnitudes and therefore in the following both flows will be considered.

The second hypothesls can be restated as follows: under the action of
the applied stress fileld a strain-diffusion and diffusive transfer of oriented
matter takes place. The total flow of the oriented matter @ per unit time
and unit area of the cross-section is glven by

0=—BE@Z D)% (2.4)

*) See footnote on p. 1265.

**) In this work only one~-dimensional model 1s considered. In the multi-
dimensional case, of course, the maximum tangential stress enters all the
relationships.
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The above descriptions of the appearance of mobility of the elements of
oriented matter and thelr transfer are qualitatively supported by recent
experimental investigatlions of Kargin. Preliminary estimates of the magni-
tudes of the diffusion and strain-diffusion coefficlents indicate that they
are small, Nevertheless, the combined effect of these small quantities 1is
sufficient to account for the observed effect,

Composing in the usual manner the equation of continuity for the oriented
matter, we obtain

as:_l_a,s‘;;;u_qm 6)S+ [B() +D()8] (2.5)

where u(x,t) is the velocity of the section x at the instant ¢ , The
overall equation of continulty based on the assumptlion that the density
remains constant has the form

oSu
az o+ 7 =0 (2.6)
Combining Equations (2.5) and (2.6), we obtain
S 4 sud— g m, c)S-|———S[B(c) +D (o) 2 ] 2.7y

In this manner the process of orientational deformation of a specimen
subjected to cold drawing 1s described by the system of two differential
equations (2.6) and (2.7) and two end conditlons (1.1) and (1.2). Together
with the corresponding initial.and boundary conditlions the system completely
determines the process.

3. We shall now consider a uniform propagation of the neck. Once more,
we note, that there exists a deep analogy between this process and the pro-
pagation of the gene [7) and the normal propagatlon of flames {8 and 9] due
to the generality characterizing the approach to these problems. The uniform
propagation of the neck 1is described by the solution of the system of equa-
tions obtained above. This solution is invariant under the transformation
of time and space coordinates, In order to solve the system we shall con-
sider the specimen to be infinitely long, so that the clémps are positioned
at x =+ » ., We shall assume that the edge of the neck propagates from
right to the left so that the material near the right clamp (x = + =) 18
completely deformed, and on the other side (x - — =) the orientational
deformation has not started. In this way, no change takes place in the
vicinity of the clamps and there the flow of orlented matter 1s absent. The
clamps are moving apart at a constant rate which causes the edge of the neck
to move at a steady veloclty V¥ . We shall assume also that in the absolute
reference frame the left clamp 1s fixed and the right moves. We shall use
the coordinate € = x + V¢ , moving with the edge of the neck, so that the
process is steady. Equations (2.6) and (2.7) become then ordinary differ-
ential equatlions and assume the form

dSu

A 0, Su = const 3-1)
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dn d ds dn 9

Sufy =@ 0)S + 7 S[B©F+DO)F] (3:2)

(The quantity u here and in the following development is preserved for
the velocity in the moving coordinate system).

The value of the constant in (3.1) is determined from the conditions at

the left clamp s S “ Vv .
= g = at - — 00

so that (3.1) assumes the form

Su =8V (3.3)
The velocity v , at which the clamps part, 1s determined as follows
— 1 _ 1—a
v =1 (00, 8) — u(~ 00, 8) = g S¥ —V =PV (;3: - ) (3.4)

Eliminating 7, S and u from Fquation (3.2) with the help of Equations
(1.1), (1.2) and {(3.3) we obtain the equation for the distribution of stress

o(z) novgg- —q( o —a)+o* (1 — a)—;gP @, 0, gg_ (3.5)
where
P (0,00 = —[B (0) + D (0) rpsy | (3.6)

At the left clamp the orientational deformation has not started yet, at
the right clamp. it has reached completion, therefore at both clamps the flow
of oriented matter is equal to zero, and the distribution of stresses a(eg)
must satisfy two boundary condlitions

do
G=007 ——:0 at E,-*—OO

dE
d
o=, i—:o at E— oo 3.7)

The independent variable £ can be eliminated from Equation (3.5) by
taking z = P(o, oo)dc/ag and consldering ¢ to be the independent variable.
Equation (3.5) 1s then reduced to the first order equation

dz _ __mV __ qP (3.8)

conditions (3.7) assume the form

z2=0 at.s=a, z=0 at ©=20o/Q (3.9)
It is convenlent to change to the followlng varilables

— [6—o0) _ Goz i—u

T= u=% (s="3") (3.10)
Then Equation (3.8) and the end condition (3.9) take the form

du noV __ 6(z, 00) _ qPoo? 311
&t T T {@—o) (1B T T w 0= —Fu+pm -11)
u=0 at Tv=0, u=0 at =1 (3.12)

It is easy to see that a necessary condition for existence of solutions
of the boundary value problem (3.11), (3.12) 1s
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0 (0,09 = 0, 0 (1,0 =0 (3.13)

The physlcal meaning of these conditions is clearly the absence of change
at infinity. Indeed, 1f for instance the velocity of change was finite at
infinity to the left (the wider part of the specimen) then in the short time
the process could not longer exlst as the neck would have reached the left
clamp and all the matter would have been converted 1nto the orlented state.

One would think that the first condition of (3.13) contradicts the expo-
nential relationship of Equation (2.2}, i.e. if this relationship is assumed,
the first condition of (3.13) will not be satisfied. However it .is the expo-
nential dependence of the veloclty of transfer that makes 1t negligibly small
in the wide region of the rod compared to that in the region where propaga-
tion takes place. Therefore the change of whatever small but finite guantity
of matter in the wide region of the rod would necessarily take a very long
time, during which the neck propagates over large distances, For specimens
of realistic dimensions the preliminary orientational deformation in the
wider part of the specimen 1s infinitely small and conditions (3.13) can
always be considered satisfied. (As 1s well known, a similar situation
arises in the theory of combustion [9]).

We shall note now that it 1s not possible to solve the first order equa-
tion (3.11) for an arbltrary set of values of parameters ¥V and g, and
satisfy ‘the two end conditlons (3.12) at the same time. As is usually the
case, the velocity of the separation of clamps v , or for that matter, the
neck propagation veloecity v = (1/g)v 1s arbitrary. However the value of
the parameter o,= 0,  , the "critical stress" (*), has a specific signifi-
cance and has to be .chosen so that the sought solution satisfies both end
conditions (3.12). The physical meaning of the parameter g, derives from
the fact that for a given veloclty of clamps the neck forms only when the
stress reaches a well defined value. It is evident that for some values of
the velocity of drawing there existsno values of ©0,= 0¥ which will give
solutions satlsfylng both end conditions. This means that at such velocities

of drewing rupture will occur with no cold drawing taklng place.

4, We shall now derive certain conditions under which the critical stress
o exists and is unique. We assume that 8(T,0,) = O not only at r =0
but also on the interval O < T < 7,<1, ani ror 1< v<1, the function
e(T,ao).is a contilnuously differentiable function of both arguments and mono-
tonously increasing with ¢,. The first assumption, as in the theory of com-
bustion [9 and 2], assures in a certain sense the stability of the process.
Under these assumptlons the critical stress °6* exists and is unique for
all values of V . Accoeding to Equation (3.11) for g,= O We have
0 (1,0, = O" then the solution of Equation (3.11) satlsfying the first of
conditions (3.12) has the form

noVt
w0 () = T=ay A ¥ §0) (1)

*) "Recrystallization stress" according to accepted terminology [4 and 5].
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so that
ug(1) =ny /18>0

The family of solutions of Equation (3.11) satisfying the first of the
conditions (3.12) for Oy > 0, 1s shown in Fig.6. All curves of the family
fall below the curve corresponding to u = u,(T)
and form two classes. The curves of the first
Uy (1) class intersect the ordinate + = 1 at polnts
corresponding to positive values of uy and the
curves of the second class intersect the absclssa
at polnts 1t < 1 not reaching the ordlnate r1=1.
The solution curve dividing the two classes passes
through the saddle point y = O, + =1 and 1s the
unique sought solutlon. The corresponding value

i
!
.
0 5 ;T

Fig. 6 of the parameter g,= c:' is the critical stress,

We shall show the individual steps of the proof of exlstence and unlqueness
of the sought solution of the boundary value problem and the stress qf .

In order to prove the existence we shall note that 1f g¢,” > co’ and
ulr, 05°) > 0, ulr, 0,’) > O then

U (T, 0y) > u(r, 0p7) for T<T< 1 4.2
Differentiating Equation (3.11) with respect to g, gives
dv 1 1 40 ou
T EAm ) v g i g, s

Considering this as a linear equation in v and using the condition

v(1,} = O, we obtain . . .

0dt\( Odry 1 49
”(T)——GXP<S - )SexP(_S _uT)_u—%—o—dT<0 (4.4)
To To To
From this results the proposed inequality (4.2), since we have
coll

u (T, 6y") — u(r, 6y) = S vdoy <0

’

T

As direct consequence of the lnequality (4.2) and Equation (3.11) inte-
grated between the limlts zero and r , for y >0 we get

¢ 0 (7, d ¢ 0 (v, d
w509 = np () — { LEILEE £  —{ 2ETB e (.5

so that for any 71 = 1, 1ncluded in the interval r,< T,< 1 the solutlon
of Equation (3.11) and satisfying the first of conditions (3.12) satisfies
also the inequality T

0 (7, gp) dv

u Ty, Op) < up (Te) — g U (V)
Te
From this inequality and the fact that u,(r) 1s bounded, whereas 9(r,0,)

increases without bounds with g¢,, i1t follows that for some g,= g, the
solution wu(r,0,) vanishes at the point =1 = 7.

We shall now consider u,(r,0,), the solutions of Equation (3.11) satis-
fying the second of the conditions (3.12). The point uy =0, T =1 is a
singular point of the system, a saddle point. Through this point pass two
solution curves (separatrices). The slope of these curves at the polnt r=1

(4.6)
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satlisfies the characteristic equation

ngVa? s
kz'_1_ak+0-t (1,00 =0 (4.7)

Since 91'(1,00 <:f%.one curve has a positive slope, the other negative.
For obvious reasons we choose the curve with the negative slope.

Owing to the continulty of the solution fileld a curve u(T,0,) for suffi-
clently small g, approaches the curve (t) over the whole 1n%erval
<1< 1. From® the continuity of the soiutio u, (1,0,) 1t also follows

that for a chosen sufficiently close to t =1 and for small
u(t,00) — Uy T ,a° > 0 . Howevér, for g,= g,, the difference is o%viously
negatlive. n from the continuity of the di%ference 1t follows that there

exlsts g = c for which u, (1.,0,%) = u{t4,0,*) . This value of the para-
meter g, has’ to be determined.

The uniqueness of the solution and of the critical stress can be proved
from the very same considerations. Let us assume that two solutions of the
boundary value problem exist corresponding to g,= g,* and °o’ ox*> o *
Then in the vielnity of 1 = 71,, according to (4. 2),° ulr,0®) < ulr,0.*

For t,< 7 < 1, the solution u(T,O *#*) cannot vanish owing to fact %hat
du/dt > O for u < O such a solutidn curve cannot reach the point y = O,
v =1 ., It follows from this that y(r,0,**) vanishes in the interval

O t€ 1 onlyat 7 =0 and =1 . &herefore, form the differentiabi-
ity of ulr1,0,%*), the 1m=quality (4.2) and the conditions (3.12) results
the existence of a value in the interval t,< 7 < 1 , such that

[du (v, 0,**) [ dv | <|du (7, o&ﬁ Tdré However, this condition 1s lmpossible
inesmuch as ulr,0, ) satisfies quation (3.11) and 0 (Tux, O¢**) > 0 (Tex, 0p%),
Or U {Tyy, 0**) < u(T**,Uo) The resulting contradiction proves uniqueness.

In the general case, for an arbitrary form of the function 9(7,00), the
value og* can be found since the Cauchy problem assoclated with Equation
(3.11) can always be solved for one or the other of the initial values

noVro
U=-——-———— for T=Ty, or u=2~_0 at t=1
(1 —a) (1 4-87)
for different values of ¢, . Therefore g,* can be found to any required

degree of accuracy by trial and error.

For the practically interesting case when 1, has a value close to 1, some
silmple conditlons determining o¢,* can be obtalned from the corresponding
development in the theory of combustion [8 and 9]. It is easy to show that

o

is a monotonous, increasing function of ¢, . In this way we

u (7) < 89 T, 0y) dr)% u (1) < <2i 8 (7, 6yp) df>’/’= F (o)) (4.8)
)

where Flo,

£ind * noV 1ty
Flon) = oy + )

where gy,* 1s an estimate ‘from below of of

(4.9)

Substituting into the right-hand side of Equation (3.11) the estimate from
above of ulr) , from (4.8) we obtain

1
e 1— 0 n.oV
c>(m noaf' - Zismar

from which it follows that o,.*, an estimate from above of gg* satisfies
Equation

xy _ a(l—T)neV noV't
F (602 ) (1 _ Q) (1 + BTO) - (1 — a)o(i _:_ BTO) (4.11)
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For 1t,- 1 both estimates coincide resulting in the final relation deter-
mining the critical stress g, *
non.
F (o) = (4.12)

From (3.11) we have I —a

F (o) = (2 i 0 (v, o)) dr)" = g, (213 i) G13)

To
For 1T, approaching unlty the above equation assumes the form

F (0g) = —%io_—a

(2p (%) i q (1, a,) dr)”’ (4.14)

as only g(r,0,) varies rapidly in the vicinity of 1 = 1 ,

Ir, in particular, Expression (2.2) is assumed for g¢l(n,0), then (con-
sidering (1 — @) yo,/ akT =>>1 1in order for g (T, g,) to be a rapldly
varying function in the vicinity of 1 = 1) we obtaln the following expres-

: U —
stons? g~ Ao? exp| — . 4 281t — Pexp[— L1y _ u]

akl’
1

\ 4.15)
dt ~ Ag2P+! (1 — - _ U —xso/a] (kT\p+a (
e e e P
C°TPeSP°ndinsly, the expression determining o,* becomes
Vza = * 60 So nouz E p+1 15 * .
[ B( ) + D( )1——!1} (m*) exp (@—"7—) (4.16;
where & 1s given by 5 net (1 —-a)pexp (kT (4 17)

2A4a%PH1IT (p -+ 1)

Finally we shall note that apart from the problem of uniformly propagating
neck as discussed in the above development, there is ‘another significant for-
mulation of the problem of the orientational deformation. Specifically, we
shall consider the case in which the specimen is not of constant cross-
section but whose cross-section narrows down in some specified manner, Obvi-
ously, under loadlng, the orientational deformation will start in the narrow
region. Two possibilities arise. First, if the process of transfer of ori-
ented matter assumes sufficiently high intensity, the narrowing will quickly
propagate in both directions and the ensulng process asymptotically approaches
the character of neck propagation developed above. The second possibility
is that the transfer process will not reach sufficient intensilty and the neck
will grow thinner until fracture occurs. For a given set of values of the
parameters it 1s the shape of the narrowing or the function describlng the
variation of the cross-section over the length of the sample that determines
which of these two possibilities will take place. In this way a new problem
arises, namely to determine what forms of the narrowing willl result in uni-
form propagation and what forms will result in rupture. We shall note that
this problem is conceptually similar to the problem of development of chemi-
cal reactions studied by Zeldovich and Gelfand [12]. Solutlon of thils prob-
lem allows to derive the conditions under which the process switches from
cold drawing to rupture,

The usefulness of the solution of the problems of uniform propaga.ion of
the neck and the development of the orientational deformation 1s twofold.
First, 1t allows to determine the critical stress and other characteristic
parameters of the process. Secondly it provides the foundation for the study
of the agreement between the theory of the kinetics of the orlentatlonal
deformation and the measurements of the critical stress for different velo-
cities of drawing and under different temperatures.
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